read_book
Более 7000 книг и свыше 500 авторов. Русская и зарубежная фантастика, фэнтези, детективы, триллеры, драма, историческая и  приключенческая литература, философия и психология, сказки, любовные романы!!!
главная | новости библиотеки | карта библиотеки | реклама в библиотеке | контакты | добавить книгу | ссылки

Литература
РАЗДЕЛЫ БИБЛИОТЕКИ
Детектив
Детская литература
Драма
Женский роман
Зарубежная фантастика
История
Классика
Приключения
Проза
Русская фантастика
Триллеры
Философия

АЛФАВИТНЫЙ УКАЗАТЕЛЬ КНИГ

АЛФАВИТНЫЙ УКАЗАТЕЛЬ АВТОРОВ

ПАРТНЕРЫ



ПОИСК
Поиск по фамилии автора:

ЭТО ИНТЕРЕСНО

Ðåéòèíã@Mail.ru liveinternet.ru: ïîêàçàíî ÷èñëî ïðîñìîòðîâ è ïîñåòèòåëåé çà 24 ÷àñà ßíäåêñ öèòèðîâàíèÿ
По всем вопросам писать на allbooks2004(собака)gmail.com



объекты в промежутке между теми и другими не помещают. Установление единого
и чисел отдельно от вещей, а не так, как у пифагорейцев, и введение идей
произошло вследствие исследования в области понятий (более ранние философы
к диалектике не были причастны)".
Но что такое "математические объекты", или "математические вещи", как их
называет Аристотель? Чем они отличаются от чисел, которые Платон считает
идеальными образованиями? Почему Платон, по словам Аристотеля, помещает эти
самые "математические объекты" в промежутке - между миром идеального и
чувственным миром, т.е. между числами и вещами?
Обратимся за разъяснением вопроса о природе чисел и "математических
объектов" к самому Платону. Поясняя, что такое число, Сократ говорит своему
собеседнику: ""Как ты думаешь, Главкон, если спросить их (математиков. -
П.Г.): достойнейшие люди, о каких числах вы рассуждаете? Не о тех ли, в
которых единица действительно такова, какой вы ее считаете, - то есть
всякая единица равна всякой единице, ничуть от нее не отличается и не имеет
в себе никаких частей?" - как ты думаешь, что они ответят?
- Да, по-моему, что они говорят о таких числах, которые допустимо лишь
мыслить, а иначе с ними никак нельзя обращаться" (курсив мой. - П.Г.).
Итак, число - это идеальное образование, его нельзя воспринять чувственно,
а можно только мыслить. В чувственном мире невозможно найти "единицу,
которая ничем не отличалась бы от другой" - любой предмет чувственного
мира, любая чувственная "единица" отличается от другого предмета, от другой
"единицы", тождественны они лишь с точки зрения того, что каждый из
предметов мыслится как "один", а "один" равен "одному" только в мире
идеализаций. Как образования идеальные и постижимые только мыслью, числа не
отличаются от идей ("суть идеи", как говорит Аристотель).
Важным моментом в платоновском обосновании числа как чисто мыслительного
образования является положение о принципиальной неделимости единицы -
неделимости логической, поскольку сама единица теперь мыслится как
логическое начало. Согласно Платону, наука о числах "влечет душу ввысь и
заставляет рассуждать о числах самих по себе, ни в коем случае не допуская,
чтобы кто-нибудь подменял их имеющими число видимыми и осязаемыми телами.
Ты ведь знаешь, что те, кто силен в этой науке, осмеют и отвергнут попытку
мысленно разделить самое единицу, но если ты все-таки ее раздробишь, они
снова умножат части, боясь, как бы единица оказалась не единицей, а многими
долями одного".
Единица неделима, ибо она есть единое, а единое неделимо по определению.
Единица, согласно концепции Платона, рождает множество, но и само множество
имеет своим логическим условием единицу: ведь если нет единого, то нет и
многого, поскольку многое - это множество единиц. Единицу нельзя разделить
на том самом основании, которое Платон с предельной четкостью сформулировал
в заключительных словах к диалогу "Парменид": "Если единое не существует,
то ничего не существует".
Что же, однако, такое "математические вещи", или "математические объекты",
о которых говорит Аристотель, и чем они отличаются у Платона от чисел? Вот
что говорит об этом Платон: "Когда они (геометры. - П.Г.) пользуются
чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те
фигуры, подобием которых он служит. Выводы свои они делают только для
четырехугольника самого по себе и его диагонали, а не для той диагонали,
которую они начертили. То же самое относится к произведениям ваяния и
живописи, от них может падать тень и возможны их отражения в воде, но сами
они служат лишь образным выражением того, что можно видеть лишь мысленным
взором" (курсив мой. - П.Г.).
Рассматривая эти соображения Платона в своей истории античной математики,
Б.Л. ван дер Варден полагает, что античные математики должны были быть
согласны здесь с Платоном. "И действительно, - пишет Варден, - для
прямолинейных отрезков, которые можно видеть и эмпирически измерять,
является бессмысленным вопрос, имеют ли они общую меру или нет: ширина
волоса уложится целое число раз в любом начерченном отрезке. Вопрос о
соизмеримости имеет смысл только для отрезков, создаваемых мыслью".
Платон, таким образом, различает геометрические фигуры, как они
представлены на чертеже, и "фигуры сами по себе", т.е. такие, которые
"можно видеть лишь мысленным взором". Видимо, последние как раз и есть те
"математические вещи", которые, по свидетельству Аристотеля, Платон
отличает от чисел и которые он считает промежуточными, помещая их между
миром идеального и чувственным миром.
"Математические объекты", стало быть, - это те образования, которыми
оперирует не арифметика, имеющая дело с числами, а геометрия, это фигуры:
окружности, треугольники, четырехугольники - и их элементы: радиусы, углы,
диагонали, биссектрисы и т.д., т.е. линии и плоскости, по-разному
сконструированные. К математическим Платон относит и "объекты"
стереометрии: шар, куб, тетраэдр, икосаэдр и др. Все это, согласно Платону,
объекты мысли, но они в то же время могут иметь чувственные подобия,
чувственные аналоги: в качестве таких подобий могут выступать не только
начерченные на песке или на восковой дощечке круги, треугольники и т.д., но
и вырезанные из дерева или из камня шары, кубы, пирамиды. Видимо, в этом
смысле Аристотель и говорит, что Платон считает числами и вещи, и причины
вещей, но причинами он считает числа умопостигаемые, а те, что воплощаются
в вещах, считает производными от первых. Точно так же и с геометрическими
объектами: те вещи, которые имеют форму шара или куба, Платон считает
чувственными подобиями идеального шара или куба, так же как чувственными
подобиями геометрических фигур являются их чертежи.
Понятие пространства у Платона и онтологический статус геометрических
объектов
Но почему же числа и геометрические объекты оказываются у Платона имеющими
разный статус: числа - чисто идеальные сущности, а линии, углы, фигуры -
сущности "промежуточные"? В соответствии с этим различением арифметика
выступает у Платона и Аристотеля как первая в ряду математических наук и
наиболее среди них "простая", а тем самым и более достоверная, чем
геометрия. В чем коренится такое различие между арифметикой как наукой о
числах и геометрией как наукой о "фигурах"? Оно коренится в том, что числа
и числовые отношения геометрия представляет в виде определенных
пространственных образов, схем, т.е. фигур.
Пифагорейцы по той причине, видимо, не различали числа и вещи, что они
считали единицу, имеющую определенное положение в пространстве (т.е.
точку), вещью; поскольку эмпирический мир вещей - это мир пространственный,
то единица, становясь точкой, тем самым выступает как элемент
пространственного, а значит, эмпирического мира.
Показывая, что геометрические конструкции по своему статусу отличаются от
вещей чувственного мира, Платон в то же время не может отождествить их с
собственно идеальными объектами, каковы числа. Пытаясь найти онтологический
статус геометрических объектов, он приходит к мысли о том, что пространство
- стихия геометрии - есть нечто среднее между идеями и чувственным миром.
Насколько нам известно, Платон впервые в античной науке вводит понятие
геометрического пространства; до него античная философия не отделяла
сознательно пространство от его наполнения, за исключением разве атомистов,
но они определяли пространство физически - как пустоту, отличая ее от
атомов как "полного". И не только доплатоновская, но и послеплатоновская
научно-философская мысль в лице Аристотеля и его учеников не признавала
пространства в том виде, как его понимал Платон; пространство выступает у
Аристотеля как "место", а это понятие радикально отличается от
геометрического пространства Платона.
Поскольку понятие пространства, впервые формирующееся у Платона, имеет
очень большое значение для эволюции науки и ее исходных принципов,
поскольку оно, далее, тесно связано с платоновским обоснованием математики,
мы рассмотрим его здесь подробнее. В диалоге "Тимей" Платон следующим
образом определяет пространство: "...приходится признать, во-первых, что
есть тождественная идея, не рожденная и не гибнущая, ничего не
воспринимающая в себя откуда бы то ни было и сама ни во что не входящая,
незримая и никак иначе не ощущаемая, но отданная на попечение мысли.
Во-вторых, есть нечто подобное этой идее и носящее то же имя - ощутимое,
рожденное, вечно движущееся, возникающее посредством мнения, соединенного с
ощущением. В-третьих, есть еще один род, а именно пространство (· cиra):
оно вечно, не приемлет разрушения, дарует обитель всему рождающемуся, но
само воспринимается вне ощущения, посредством некоего незаконного
умозаключения, и поверить в него почти невозможно".
Пространство, как видим, определяется Платоном как нечто отличное, с одной
стороны, от идей, постигаемых мыслью (n"hsiV), которые мы назвали бы по
этой причине логическим объектом (для Платона логическое имеет статус
единственно истинного бытия), а с другой - от чувственных вещей,
воспринимаемых "ощущением" (aЗsJhsiV). Пространство лежит как бы между
этими мирами в том смысле, что оно имеет признаки как первого, так и
второго, а именно: подобно идеям, пространство вечно, неразрушимо,
неизменно - более того, оно и воспринимается не через ощущение. Но сходство
его с чувственным миром в том, что воспринимается оно все же не с помощью
мышления. Та способность, с помощью которой мы воспринимаем пространство,
квалифицируется Платоном весьма неопределенно - как "незаконное умозрение"
(+pt'n logismщ tinИ n"JJ). Переводя это выражение Платона как "гибридное
рассуждение", Дюгем тем самым хочет подчеркнуть, что способность, которой
мы постигаем пространство, есть некий гибрид, "помесь" между мышлением и
ощущением.
Интересно, что Платон сравнивает видение пространства с видением во сне:
"Мы видим его (пространство. - П.Г.) как бы в грезах и утверждаем, будто
это бытие непременно должно быть где-то, в каком-то месте и занимать
какое-то пространство, а то, что не находится ни на земле, ни на небесах,
будто бы и не существует".
Сравнение "незаконнорожденного" постижения пространства с видением во сне,
очевидно, весьма для Платона важно, потому что он употребляет это сравнение
не однажды. В диалоге "Государство", говоря о геометрии и ее объектах,
Платон вновь пользуется этим сравнением: "Что касается остальных наук,



Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 [ 27 ] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
ВХОД
Логин:
Пароль:
регистрация
забыли пароль?

 

ВЫБОР ЧИТАТЕЛЯ

главная | новости библиотеки | карта библиотеки | реклама в библиотеке | контакты | добавить книгу | ссылки

СЛУЧАЙНАЯ КНИГА
Copyright © 2004 - 2024г.
Библиотека "ВсеКниги". При использовании материалов - ссылка обязательна.