read_book
Более 7000 книг и свыше 500 авторов. Русская и зарубежная фантастика, фэнтези, детективы, триллеры, драма, историческая и  приключенческая литература, философия и психология, сказки, любовные романы!!!
главная | новости библиотеки | карта библиотеки | реклама в библиотеке | контакты | добавить книгу | ссылки

Литература
РАЗДЕЛЫ БИБЛИОТЕКИ
Детектив
Детская литература
Драма
Женский роман
Зарубежная фантастика
История
Классика
Приключения
Проза
Русская фантастика
Триллеры
Философия

АЛФАВИТНЫЙ УКАЗАТЕЛЬ КНИГ

АЛФАВИТНЫЙ УКАЗАТЕЛЬ АВТОРОВ

ПАРТНЕРЫ



ПОИСК
Поиск по фамилии автора:

ЭТО ИНТЕРЕСНО

Ðåéòèíã@Mail.ru liveinternet.ru: ïîêàçàíî ÷èñëî ïðîñìîòðîâ è ïîñåòèòåëåé çà 24 ÷àñà ßíäåêñ öèòèðîâàíèÿ
По всем вопросам писать на allbooks2004(собака)gmail.com



фигурами. Понятно, что различие в онтологическом статусе арифметических и
геометрических объектов должно обусловливать, согласно Платону, также и
познавательную значимость этих двух математических наук. Арифметика поэтому
является первой в ряду наук и наиболее логически обоснованной. Что касается
геометрии, то она не имеет строго логического обоснования, ибо ее элементы
нуждаются для своего обоснования также в "интеллигибельной материи" -
пространстве. Для геометрии наглядность ("созерцание") необходима, для
арифметики - нет. Тем не менее все математические науки имеют в глазах
Платона высокий ценностный статус: все они в той или иной мере причастны к
постижению высшего бытия, а потому и должны почитаться как средства к
высшему познанию.
Большинство историков науки согласны между собой в том, что греческая
математика отличается от средневековой и особенно от математики нового
времени. К характерным ее чертам принадлежит, в частности, специфическое
отношение к числу, носящее ярко выраженный аксиологический характер. Такое
отношение к числу особенно характерно для математиков и философов,
принадлежащих к пифагорейской школе и к платоновской Академии. Анализ
платоновских произведений показывает, как складывалось и чем мотивировалось
ценностное отношение к математике.
Само происхождение знаний о числе представляется Платону достойным всякого
почитания. "Давайте рассмотрим, - говорит он, - как мы выучились считать.
Скажите: откуда у нас появилось понятие единицы, двойки? Почему только мы
одни из всех живых существ по своей природе можем иметь такое понятие?..
Нам впервые привил Бог понимание того, что нам показывают, а затем он
показал нам число и показывает до сих пор. Происходит беспрестанная смена
многих ночей и дней. Небо совершает это беспрестанно, научая людей понятию
о единице и двойке, так что, наконец, и самый неспособный человек
оказывается в состоянии усвоить счет. Созерцая это, каждый из нас может
получить понятие о числах "три", "четыре" и о множественности".
Счет, таким образом, есть нечто священное уже потому, что ему нас научило
Небо. То, что математика на Востоке с самых древних времен связана была с
астрономией, в этом нет сомнения, и это, собственно, Платон и имеет в виду.
Однако математика, как и астрономия, была связана и с практическими
нуждами, но эту ее функцию Платон, как мы уже видели, считает производной и
второстепенной.
Дарованная нам Небом наука о числе, согласно Платону, не может содержать в
себе ничего дурного, отрицательного. Вот отрывок, где дается ценностная
характеристика числа: "Что число не вызывает ничего дурного, это легко
распознать, как это вскоре и будет сделано. Ведь чуть ли не любое нечеткое,
беспорядочное, безобразное, неритмичное и нескладное движение и вообще все,
что причастно чему-нибудь дурному, лишено какого бы то ни было числа.
Именно так должен мыслить об этом тот, кто собирается блаженно окончить
свои дни. Точно так же никто, не познав [числа], никогда не сможет обрести
истинного мнения о справедливом, прекрасном, благом и других подобных вещах
и расчислить это для самого себя и для того, чтобы убедить другого" (курсив
мой. - П.Г.).
Таким образом, число внутренне связано с прекрасным, благим и священным, а
потому отнюдь не есть нечто нейтральное по отношению к ценностям. Именно с
понятием числа Платон связывает порядок, упорядоченность, ритм, склад
(лад), гармонию, согласованность, меру, соразмерность, а все это - атрибуты
не только прекрасного, но и доброго, благого, оно же и истинное. Поэтому в
самом числе выделяется и подчеркивается прежде всего то, что несет эти
атрибуты.
Первой среди математических наук Платон считает арифметику. Арифметика,
"главная и первая из наук - это наука о самих числах, но не о тех, что
имеют предметное выражение, а вообще о зарождении понятий "чет" и "нечет" и
о том значении, которое они имеют по отношению к природе вещей. Кто это
усвоил, тот может перейти к тому, что носит весьма смешное имя геометрии.
На самом деле ясно, что это наука о том, как выразить на плоскости числа,
по природе своей неподобные".
Два числа, ab и cd, называются подобными в том случае, если их множители -
"стороны" (как говорят античные математики, тем самым указывая на то, что
число мыслится ими геометрически) - пропорциональны, т.е. a:c = b:d. Если
же числа оказываются неподобными, то их можно уподобить, представив как
площади подобных прямоугольников; задача уподобления двух чисел ab и cd
предстает тогда как задача нахождения средних пропорциональных m и l, так
что площади ab и cd относятся как m2:l2. Таким образом, задача нахождения
средних пропорциональных с целью "уподобления" чисел мыслится Платоном как
центральная проблема геометрии. Установление пропорциональных отношений,
как видим, оказывается не одной из задач математики наряду с прочими, а
центральной ее темой.
"Вслед за этой наукой идет еще одна, ей подобная: люди, ею занимающиеся,
также назвали ее геометрией. Наука эта изучает тела, имеющие три измерения
и либо подобные друг другу по своей кубической природе, либо неподобные,
приводимые к подобию с помощью искусства". Речь идет, как нетрудно
заметить, о стереометрии, которой Платон отводил важное место среди
математических наук. Главной ее задачей он тоже считал установление
пропорциональных отношений.
В сочетаниях Платона рассматриваются три вида пропорций: арифметическая,
геометрическая и гармоническая. Так, в "Тимее", объясняя принцип построения
космоса демиургом, Платон приводит сложное числовое построение, в основе
которого лежит система пропорциональных отношений: "...в каждом промежутке
было по два средних члена, из которых один превышал меньший из кратных
членов на такую же его часть, на какую часть превышал его больший, а другой
превышал меньший крайний член и уступал большему на одинаковое число".
Здесь Платон дает определение гармонической и арифметической пропорции.
Если средний член превышает меньший из крайних на такую его часть, на какую
сам он превышается большим крайним членом, мы имеем гармоническую
пропорцию. Так, для двух чисел - 6 и 12 - гармонической средней будет 8.
Гармоническая пропорция - это 6, 8, 12, т.е. 1, 11/3, 2. Если же средний
член превышает меньший из крайних на такое же число, на какое его самого
превышает больший крайний, то пропорция будет арифметической: 6, 9, 12 или
1, 11/2, 2. Есть у Платона и третий вид пропорции, хотя он его не
определяет в приведенном отрывке, - геометрическая пропорция: второй член
должен так относиться к третьему, как первый - ко второму: 1, 2, 4.
Таким образом, именно теория пропорций была в центре математических
исследований, проводившихся в Академии, и не случайно такие математики, как
Теэтет и Евдокс Книдский, если доверять античным источникам, уделяли
большое внимание этой теме. Так, О. Беккер полагает, что V и VI книги
"Начал" Евклида, содержащие теорию пропорций, принадлежат Евдоксу, с чем
согласен также и ¤.¦. ван дер Варден.
Последовательный ряд наук - арифметика, геометрия и стереометрия -
продолжается еще одной наукой - астрономией. Астрономия - четвертая в ряду
математических наук, но в то же время она как бы возвращает нас и к началу
ряда, поскольку, как мы помним, по Платону, арифметика обязана своим
возникновением созерцанию Неба и происходящих в нем перемен. Вот что пишет
Платон о месте астрономии среди других наук и о ее предмете: " "Завершением
их (наук. - П.Г.). должно служить рассмотрение божественного происхождения
и прекраснейшей и божественной природы зримых вещей. Бог дал созерцать ее
людям, но без только что разобранных наук никто этого не может, хотя бы кто
и похвалялся тем, что он легко все схватывает... Нам надо познать точность
времени, а именно, с какой точностью совершаются все небесные
кругообращения... Всякая геометрическая фигура, любое сочетание чисел или
гармоническое единство имеют сходство с кругообращением звезд;
следовательно, единичное для того, кто надлежащим образом это усвоил,
разъясняет и все остальные".
Отсюда можно видеть, что астрономия имеет своим предметом закономерность
небесных движений, выраженную в точных числовых соотношениях. В этом смысле
астрономия - тоже наука математическая, предполагающая знание арифметики и
геометрии. Более того, как утверждает Платон, в движениях небесных тел
находят свое как бы телесное воплощение математические отношения, изучаемые
тремя первыми математическими науками. А потому изучение одной из этих
наук, в сущности, уже есть и изучение остальных, ибо их предмет в конце
концов один, только берется в разных аспектах. Видимо, так можно
истолковать последнее предложение приведенного отрывка. Это опять-таки
близко к пифагорейской традиции, согласно которой определенное сочетание
чисел соответствует правильному движению небесных сфер и гармоническому
сочетанию звуков. Гармония чисел, движений и тонов - одна и та же гармония,
и ее чистое выражение - математическая пропорция.
Астрономия у Платона непосредственно следует за стереометрией: стереометрию
он определяет в "Государстве" как "науку об измерении глубины", а
астрономию - как науку о вращении тел, имеющих глубину. В отношении
астрономии Платон рассуждает так же, как и в отношении геометрии, различая
два возможных к ней подхода: практический и чисто философский. С
практической точки зрения астрономия очень важна, ибо "внимательные
наблюдения за сменой времен года, месяцев и лет пригодны не только для
земледелия и мореплавания, но не меньше и для руководства военными
действиями". Однако практическая польза от астрономии - это отнюдь не самое
главное, ради чего необходимо ею заниматься. Как и другие науки -
арифметика, геометрия, стереометрия, - астрономия, согласно Платону,
подготовляет наш ум к постижению высшей истины, ценной не ради ее
приложений, но сама по себе, и в этом главное ее назначение: "...в науках
очищается и вновь оживает некое орудие души каждого человека, которое
другие занятия губят и делают слепым, а между тем сохранить его в целости
более ценно, чем иметь тысячу глаз, ведь только при его помощи можно
увидеть истину". Платон, как видим, подчеркивает, что астрономия, как и
математика в целом, служит средством перехода от предметов, данных
непосредственному ощущению, к предметам, которые можно постигнуть лишь в
мышлении, т.е. к "вещам невидимым". И в этом он усматривает главное
назначение астрономии. Понятая таким образом астрономия, как и другие



Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [ 31 ] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
ВХОД
Логин:
Пароль:
регистрация
забыли пароль?

 

ВЫБОР ЧИТАТЕЛЯ

главная | новости библиотеки | карта библиотеки | реклама в библиотеке | контакты | добавить книгу | ссылки

СЛУЧАЙНАЯ КНИГА
Copyright © 2004 - 2024г.
Библиотека "ВсеКниги". При использовании материалов - ссылка обязательна.